If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-42=0
a = 2; b = 16; c = -42;
Δ = b2-4ac
Δ = 162-4·2·(-42)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{37}}{2*2}=\frac{-16-4\sqrt{37}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{37}}{2*2}=\frac{-16+4\sqrt{37}}{4} $
| 2x+x+8=3x- | | (7b-2)-3(2b+3)=-3 | | 6x-10=11x | | 2x+x+0.25x=99 | | 5x-(4x=6)=-2 | | 2x+2=52x | | 10x-111=60+x | | –24+0.44x=–19+1.69x | | 21+22x=15+25x | | 8(3x–6)=10x+48+14x | | w+5.9=6.5 | | 39.3=r+16 | | x-3/4+x-2/3=11/12 | | s−50=32 | | s-14=-26 | | 29=16+x | | -6.5f=-58.5 | | 70m=7 | | 2x•12x=0 | | 2m2-5m+3=0 | | 2m2-5+3=0 | | {2}{3}x-5={1}{2}x-3 | | 5/n+8=3 | | 60x+300=25x+400 | | 6/n+3=1 | | 5x/6-1x/18-3/4=7/12-2x/9+2/3 | | t÷3-1=6 | | 2h-47=27 | | 2x−4=11−x | | 14.1t=43.9 | | 16x+9=4(5-x) | | 99=-x |